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Quenching problem of globally coupled bistable
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Abstract. The transient process of globally coupled bistable systems from an unstable state to metastable
state (i.e, quenching process) is studied analytically for small noise intensity. The influences of noise
intensity and system size on the system evolution are investigated. The problem of a large number of
coupled Langevin equations is reduced to a simple problem of a one-dimensional ordinary differential
equation, subject to a white noise with intensity explicitly given. The analytical results are fully confirmed
by direct numerical computations.

PACS. 05.45.+j Fluctuation phenomena, random processes, and Brownian motion

In the last several decades, the effect of noise on non-
linear systems has attracted constant interest in physics,
chemistry, biology and almost all fields of natural science.
Rather recently, the investigation of stochastic extended
systems has become one of the central focuses on the noise
problem. In this respect, the following model of globally
coupled bistable systems [1–3]

.
xi (t) = axi(t) − x

3
i (t) + µX(t) + Γi(t)

i = 1, 2, ..., N

X(t) =
1

N

N∑
i=1

xi(t), 〈Γi(t)〉 = 0,

〈Γi(t)Γj(t
′)〉 = 2Dδijδ(t− t

′) (1)

is one of the models most extensively studied, where X(t)
is the spatial average of the realizations of xi at time t.
In this letter, we fix a = 1, this stochastic spatially ex-
tended system with global coupling is an important pro-
totype for describing many practical systems, such as neu-
ral networks, multi-mode solid lasers, coupled Josephson
junctions, and other biological and physiological systems
[4–6]. In spite of a variety of works having dealt with equa-
tions (1), up to date, two problems of fundamental signif-
icance for applications have still escaped consideration.
First, most works have considered only the asymptotic
state of equations (1), the transient process of (1) from an
unstable state to stable or metastable state, that has been
extensively investigated as the quenching problem for the
single site bistable system

.
x= x − x3+ Γ (t) [7–9], has

never been considered either numerically or analytically.
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For the coupled extended systems, the quenching problem
is related to important phenomena of clusterization and
order formation and so on, and should be clarified. Sec-
ond, all works published so far, which analytically treated
equations (1), have identically taken the large system size
limit N →∞, the finite size effect has never been analyti-
cally investigated. Actually, the second problem is closely
related to the first one since, as it will be shown, in the
infinite system size limit the time needed for the system
to evolve from an unstable state to a metastable state is
infinity, then no quenching process can be observed for
infinite size.

In this letter we will analytically study the quenching
problem of equations (1) for large but finite system size.
In the present stage any explicit analytical results can be
available only in the limit D → 0. For convenience, in our
analysis we consider also 0 < µ� 1 and N � 1, then our
analysis is based on the following conditions

1� µ� D, N � 1. (2)

The inequality µ� D guarantees bistability of system (1)
for the macroscopic variable X [3,5]. It will be shown that
the analytical results obtained can be well confirmed by
numerically running the original spatiotemporal stochas-
tic systems (1) at small but finite D and µ, and large but
finite N .

Before computing equations (1) we first specify the
quenching problem in our case. For t < 0 we set µ = 0,
then all the N stochastic bistable systems evolve indepen-
dently, then we obtain 〈xi(t = 0)〉 = 0, 〈∆x2

i (t = 0)〉 = 1,
[∆xi(t) = xi(t)−〈xi(t)〉]. According to the Large Number
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Theory, we get

〈X(t = 0)〉 = 0,

〈∆X2(t = 0)〉 =
1

N

N∑
i=1

〈∆x2
i (t = 0)〉 =

1

N

ρ(X, 0) ≈

√
N

2π
exp(−

NX2

2
) (3)

where ρ(X, 0) is the probability distribution of X at time
t = 0, and 〈X〉and 〈∆X2〉 are the ensemble average of
the macroscopic variable X and its variance, respectively.
After t ≥ 0 we switch on the global coupling among the
bistable sites (e.g., by feeding back the total output beam
for the laser array, or by including a resistance in the elec-
trical circuit of the Josephson junction array). In the con-
dition (2), the stateX = 0 is now unstable, the system will
eventually evolve to one of the two stable states X ≈ ± 1
[5]. The quenching problem is to investigate the evolution
from X = 0 to X = ± 1.

It is well known that under the condition (2), the con-
tinuous bistable systems (1) can be reduced to two-state
ones, and then the coupled stochastic bistable systems can
be simplified to the following coupled master equations [1]

.

P
±

i = −R±P±i +R∓P∓i , P+
i + P−i = 1,

i = 1, 2, ..., N (4)

where P+
i and P−i are the probabilities for the ith site to

take the state +1 and −1, respectively, and R+ (R−) is
the transition rate from +1 (−1) state to −1 (+1) state

R± =
1
√

2π
exp

[
−

1

4D
∓
µX(t)

D

]
,

R = R+ +R− = r0ch(
µX(t)

D
),

r0 =

√
2

π
exp(−

1

4D
) · (5)

By averaging equations (4), we have 〈X(t)〉 =

1
N

N∑
i=1

xi(t) = 1
N

N∑
i=1

(P+
i − P−i ), and we can further re-

duce the N coupled master equations to a single ordinary
differential equation

〈
.

X (t)〉 = −r0ch

[
µX(t)

D

]
〈X(t)〉+ r0sh

[
µX(t)

D

]
· (6)

The derivation from (4) to (6) is exact. In all previous
publications analytically treating (1) and (4), authors al-
ways used the identity X(t) = 〈X(t)〉, which is valid only
for N →∞. It is worthwhile remarking that the evolution
from the unstable state X = 0 to the stable state X = 1
(or X = −1) can never happen if one sets X = 〈X〉, since
the time for the system to stay at the unstable point can
be infinitely long.

In order to describe the practical spontaneous ordering
process we should consider the finite system size effect by
setting

X(t) = 〈X(t)〉+ η(t), 〈η(t)〉 = 0. (7)

The statistical property of η(t) can be computed, based
on the assumption: around the stable and unstable fixed
points of 〈X(t)〉, the variation of the macroscopic variable
X(t) is much slower than the variation of the microscopic
variable xi, and then we can consider X(t) to be constant
when we compute the variance of xi (so-called adiabatic
approximation treatment). A direct computation gives

〈η(t)η(t′)〉 =
1

N2

N∑
i=1

N∑
j=1

〈∆xi(t)∆xj(t
′)〉

=
1

N2
〈∆xi(t)∆xi(t

′)〉

=
1

N [chµX(t)
D

]2
exp(−R | t− t′ |) (8)

where we use 〈∆xi(t)∆xj(t′)〉 = 0 for i 6= j, and the
computation of 〈∆x2

i (t)〉 is based on equations (4). On
the other hand, far from the fixed points of 〈X(t)〉, the
stochastic force caused by η(t) is negligibly smaller than
the macroscopic force in (6), then for the entire evolution
process from the disordered state X(t) ≈ 0 to the ordered
states X(t) ≈ ± 1, we can safely and consistently apply
equation (8). By inserting (7) to (6) we arrive at a single
stochastic equation

.

X (t)a = −r0ch

(
µX(t)

D

)
X(t) + r0sh

(
µX(t)

D

)
+Rη(t) +

dη(t)

dt

ρ(X, 0) =

√
N

2π
exp

(
−
NX2

2

)
(9)

where η(t) is an effective colored noise [10–13] having zero
mean and exponentially decay correlation given in (8).

It seems that the derivative of noise dη(t)
dt leads to some

difficulty for analytical treatment. Fortunately, this term
does not cause any problem due to the cancellation in
equation (9). By identifying

dη(t)

dt
= −Rη +R∆(t) (10)

we can reduce equation (9) to

.

X(t) = −r0ch

(
µX(t)

D

)
X(t) + r0sh

(
µX(t)

D

)
+ r0ch

(
µX(t)

D

)
∆(t)

〈∆(t)∆(t′)〉 = 2D′δ(t− t′)

D′ =
1

N r0

[
ch(µX(t)

D
)
]3 · (11)

Now the N stochastic (∞ > N � 1) coupled Brownian
motions (1) are reduced to a much simpler single ordi-
nary differential equation. It is rather interesting to see
that the simple one-dimensional colored noise problem of
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Fig. 1. Probability distributions ρ(X, t) at dif-
ferent time t′s. (a) t = 0, (b) t = 600, (c)
t = 900, (d) t = 2700. (the same µ is taken
for all the following figures) µ = 0.25 for t > 0
and µ = 0 for t < 0. The computation starts at
t = −5000. D = 0.03, N = 100. Diamonds and
circles represent the results of equations (1,
11), respectively. 1000 runs are carried out for
presenting the data. The agreement of equa-
tions (11, 1) is strikingly good.

equation (9) is now further reduced to an even simpler
multiplicative white noise problem equation (11). This re-
duction is very general in the two-state approximation,
irregarding the particular form of the system. The statis-
tical features of the noise are known explicitly. The com-
putation time of (11) is incomparably smaller than that
of equations (1). However, as we will see afterwards, the
results of (11) agree with those of (1) quantitatively for
small D and µ and large N . The qualitative agreement of
(1) and (11) can be observed even for relatively large D
and µ. Therefore, a thorough investigation of the reduced
equation (11) can shed light on deep understanding of the
spontaneous ordering of the very complicated set of equa-
tions (1). For instance, from equations (8) and (11) we
find that the roles played by finite system size N , noise
intensity D and coupling µ are the following:

1. The influences of finite N on the quenching process
come from two aspects: first, reducing the system size
N can increase the fluctuation around the unstable
point X = 0 at t = 0 (see ρ(X, 0) in Eq. (9)) that def-
initely speeds the transition from disorder states (the
unstable state X = 0 corresponds to disordered oc-
cupations of the subsystems at xi = ± 1) to ordered
states (xi take identically +1, or −1); second, reducing
N can surely increase the intensity of effective noise
η(t) (and also the intensity of the white noise ∆(t))
that also makes the evolution away from the unstable
state faster.

2. It is interesting to see that changing the noise inten-
sity of Γi(t) in equations (1) does not greatly affect
either the initial probability preparation of ρ(X, 0), or
the variance of the effective noise 〈η(t)2〉, but it does

sensitively influence the correlation time of the effec-
tive noise 1/R, and the deterministic relaxation time
of equation (11) τR = 1

[( µD−1)R] . These two characteris-

tic times are important for the quenching problem. In
particular, the relaxation time τR is of crucial impor-
tance for determining the rate for the system to leave
the macroscopic unstable point X = 0.

3. Increasing the coupling µ definitely reduces the relax-
ation time τR.

In order to confirm our theory, and verify all the reduc-
tions from equations (1) to (11), we numerically compute
equations (1, 11) and compare these two types of solutions
by varying N and D. In all the following numerical calcu-
lations we fix µ = 0.25 which is not very small at all. In
Figures 1 we take D = 0.03 and N = 100, and show the
probability distributions ρ(X, t) for different times. Dia-
monds and circles indicate the numerical results of equa-
tions (1, 11), respectively. For presenting the probability
distributions, averages of 1000 runs are used. It is inter-
esting to point out that the characteristic changes of the
probability distributions from one-peak profiles to two-
peak ones for both equations happen at approximately
the same time. This shows that equations (1, 11) provide
identical quenching times and the agreements between the
two types of solutions are confirmed. LargerN and smaller
D correspond to larger relaxation time. Some small mis-
matches in Figure 1b-1d are due to relatively large µ; that
shifts the stable state of equations (1) to ±

√
1 + µ which

deviate from the approximate states of equation (11), ± 1.

In Figures 2, 3 we plot the quenching time T vs. D (N)
by fixing N = 100 (D = 0.06). T is defined as the average
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Fig. 2. The quenching time T plotted vs. D at N = 100.
T is defined as the mean first passage time for X(t) to first
cross the boundary X = ± 0.8. Diamonds and circles are com-
puted by running equations (1, 11), respectively. Average over
200 runnings is taken for obtaining each datum. The solid line
shows the optimal matching continual curve.

first passage time for X(t) to pass X = ± 0.8, computed
by running equations (1) (diamonds) and (11) (circles),
respectively. The averages are taken over 200 runs. Both
results coincide with each other satisfactorily. Neverthe-
less, for some very large N and very small D, the compu-
tation of equations (1) is so time consuming that there is
no chance for us to directly run equations (1), but we can
safely use the circles to perfectly represent the behavior
of equations (1) because the above reductions from (1) to
(11) work better for smaller D and larger N .

In conclusion we have analyzed the quenching process
of a globally coupled array of stochastic bistable systems.
The spontaneous evolution from an original disordered
state to an ordered state is investigated both analyti-
cally and numerically. A reduction of a set of N (N � 1)
coupled Langevin equations to a single-variable Langevin
equation has been carried out, and the intensity and the
correlation time of the effective Langevin force is explic-
itly given. On one hand, this reduction makes analytical
treatment possible, on the other hand it enormously saves
numerical computing time (to several orders), that makes
numerical investigations of very large N and very small D
possible.

In this letter we defined the quenching problem by the
sudden change of the coupling µ from µ = 0 to µ > 0 in
equations (1). We can use another also very practical def-
inition of quenching: sudden change of a in equations (1)
from a < 0 to a = 1 with coupling µ > 0 unchanged.
In this case the system evolution has two stages: first,
various sites make quenching from xi ≈ 0 to xi ≈ ± 1

with X = 1
N

N∑
i=1

xi ≈ 0 unchanged; second X evolves from

X ≈ 0 to X ≈ ± 1 through the probability transitions
of various sites. The second stage is exactly what we an-

Fig. 3. The same as in Figure 2 but D = 0.06, T plotted vs.
N . T increases in a manner of logarithm of N . The solid line
has the same meaning as in Figure 2.

alyzed throughout the letter. Since the time needed for
the first stage is incomparably shorter than that for the
second stage, the difference between these two quench-
ing definitions (by changing µ, or by changing a) is not
important. Therefore, the approach used in this letter is
suitable for the general quenching problems of globally
coupled stochastic systems.

Since the problem of large number of coupled Brow-
nian motions and the related problems of phase separa-
tions, order formations and clusterizations are of great
significance for practical physical, chemical systems and
interacting biology systems, we hope the study in this let-
ter may stimulate further investigations of time-dependent
evolutions of coupled stochastic systems.
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